BORON OXIDE
HEALTH AND SAFETY DATA SHEET

Date of initial Issue : March 2007
Revision No : 5
Date of Revision : June 2012

GENERAL DIRECTORATE OF ETI MADEN ISLETMELERI
TECHNOLOGY & DEVELOPMENT DEPARTMENT
Bahçekapı Mah. Fatih Sultan Mehmet Bulvarı No:179 Postcode:06377
Etimesgut / ANKARA, TÜRKİYE
SECTION 1. Identification of the Substance and the Company

1.1. Product identifier
Boron Oxide (Diboron trioxide)

Index No: 005-008-00-8
CAS No : 1303-86-2
EC No : 215-125-8
REACH Registration number: 01-2119486655-24-0003

Trade names: Boron Oxide

Chemical name/synonyms:
Boron trioxide, diboron trioxide, anhydrous boric acid, boric oxide

1.2. Relevant identified uses of the substance and uses advised against
The product is used in industrial manufacturing, in particular in:
- Ceramics
- Detergent
- Borosilicate glass
- Textile fibreglass

1.3. Company/undertaking identification
Importer
Name : ETIMINE SA
Address : 204, Zone Industrielle, Schéleck 2, L-3225 Bettembourg, LUXEMBOURG
Authorisation no: 00108143/6
Phone No : +352 52 02 02
Fax No : +352 52 02 03
e-mail : BoronMail@etimine.com

Manufacturer
Name : GENERAL DIRECTORATE OF ETI MADEN ISLETMELERI
Phone No : + 90 312 294 23 42
Fax No : + 90 312 232 59 10

1.4. Emergency phone number: + 90 312 294 23 42 (Available office hours)
Fax number: + 90 312 232 59 10 (Available office hours)

SECTION 2. Hazard Identification

2.1. Classification of the substance

Repr. Cat. 2; R60-R61
Concentrations limits: C ≥3,1%: R;R60-61
Risk Phrases: R60; R61
Safety Phrases: S45, S53

2.1.2. According to Regulation EC N°1272/2008 (CLP):
Harmonised classification provided in the 1st ATP to CLP (Regulation EC n°790/2009)
Repr. Cat. 1B; H360FD
Specific concentrations limits: Repr. 1B; H360FD: C ≥3,1%
Precautionary Statement Prevention: P201; P202; P281
Precautionary Statement Response: P308 + P313
Precautionary Statement Storage: P405
Precautionary Statement Disposal: P501

2.1.3. Additional information
For Full text of R-S phrases as well as Hazard Class/Statements and Precautionary Statements see section 16.

2.2. Label elements

2.2.1. According to CLP

BORON OXIDE
CAS No: 1303-86-2 EC No : 215-125-8
Hazard pictograms:

Signal word:
Danger
Hazard Statements:
H 360FD: May damage fertility or the unborn child.

Precautionary Statements:
P201: Obtain special instruction before use
P202: Do not handle until all safety precautions have been read and understood
P281: Use personal protective equipment as required.
P308+P313: IF exposed or concerned: Get medical advice/attention
P405: Store locked up.

2.2.2. According to REACH, Annex XVII
Restricted to professional users

2.3. Other hazards
Emergency overview
Boron oxide is a white odourless, solid substance that is not flammable, combustible, or explosive, and has low acute oral and dermal toxicity.

Potential health effects
Inhalation is the most significant route of exposure in occupational and other settings. Dermal exposure is not usually a concern because boron oxide is poorly absorbed through intact skin.

Inhalation
Occasional mild irritation effects to nose and throat may occur from inhalation of boron oxide dusts at levels higher than 10 mg/m³.

Eye contact
Boron oxide is non-irritating to eyes in normal industrial use.

Skin contact
Boron oxide does not cause irritation to intact skin.
Ingestion

Products containing boron oxide are not intended for ingestion. Boron oxide has low acute toxicity. Small amounts (e.g. a teaspoon) swallowed accidentally are not likely to cause effects; swallowing amounts larger than that may cause gastrointestinal symptoms.

Reproductive/developmental

Animal ingestion studies in several species, at high doses, indicate that borates cause reproductive and developmental effects. A human study of occupational exposure to borate dust showed no adverse effect on reproduction. A recent epidemiological study and a peer reviewing report of the past epidemiological studies conducted in China didn’t show any negative effect of boron on human fertility (10,11).

Potential ecological effects

Large amounts of boron oxide can be harmful to plants and other species. Therefore releases to the environment should be minimized.

Signs and symptoms of exposure

Symptoms of accidental over-exposure to boron oxide have been associated with ingestion or absorption through large areas of damaged skin. These may include nausea, vomiting, and diarrhoea, with delayed effects of skin redness and peeling (see section 11).

SECTION 3. Composition / Information on Ingredients

3.1. Substances

The product contains greater than 97 percent (%) boron oxide (B_2O_3).

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>EC N° / CAS Number</th>
<th>Registration Number</th>
<th>Purity</th>
<th>Risk Phrases (DSD)</th>
<th>Hazard Statement (CLP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boron Oxide</td>
<td>215-125-8/1303-86-2</td>
<td>01-2119486655-24-0003</td>
<td>98%</td>
<td>R60 ; R61</td>
<td>H 360FD</td>
</tr>
</tbody>
</table>

For other "Chemical inventory listing", please refer to section 15.

SECTION 4. First aid measures

4.1. Description of first aid measures

Skin contact

No treatment necessary because non-irritating.

Eye contact

No treatment necessary because non-irritant.

Inhalation

If symptoms such as nose or throat irritation are observed, remove person to fresh air.

Ingestion

If large amounts are swallowed (i.e. more than one teaspoon), give two glasses of water or milk to drink and seek medical attention.

Note to physicians

Observation only is required for adult ingestion of less than 4 grams of boron oxide. For ingestion in excess of 4 grams, maintain adequate kidney function and force fluids. Gastric lavage is recommended for symptomatic patients only. Hemodialysis should be reserved for massive acute ingestion or patients with renal failure. Boron analyses of urine or blood are only useful for documenting exposure and should not be used to evaluate severity of poisoning or to guide treatment[1] (see section 11).

4.2. Most important symptoms and effects, both acute and delayed

N.A. (Not Applicable)
4.1. Indication of any immediate medical attention and special treatment needed
N.A.

SECTION 5. Fire-fighting measures

5.1. Extinguishing media
Any fire extinguishing media may be used on nearby fires.

5.2. Special hazards arising from the substance
None. Boron oxide is not flammable, combustible or explosive. The product is itself a flame retardant.

5.3. Advise for firefighters
N.A.

SECTION 6. Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures
Avoid dust formation. In case of exposure to high level of airborne dust, wear a personal respirator in compliance with national legislation.

6.2. Environmental precautions
Boron oxide is a water-soluble white product that may cause damage to trees or vegetation by root absorption (see section 12).

6.3. Methods and material for containment and cleaning up
Land spill
Vacuum, shovel or sweep up boron oxide and place in containers for disposal in accordance with applicable local regulations. Avoid contamination of water bodies during clean up and disposal. No personal protective equipment is needed to clean up land spills.

Spillage into water
Where possible, remove any intact containers from the water. Advise local water authority that none of the affected water should be used for irrigation or for the abstraction of potable water until natural dilution returns the boron value to its normal environmental background level (see sections 12, 13 and 15).

SECTION 7. Handling and Storage

7.1. Precautions for safe handling
To maintain package integrity and to minimise caking of the product, bags should be handled on a first-in first-out basis. Good housekeeping and dust prevention procedures should be followed to minimise dust generation and accumulation. Your supplier can advise you on safe handling, please contact the supplier.

7.2. Conditions for safe storage, including any incompatibilities
Dry, indoor storage is recommended since the product is highly hygroscopic.

7.3. Specific end uses
The product should be kept away from strong reducing agents.
See exposure scenario in Annex to the MSDS.
SECTION 8. Exposure controls / Personal protection

8.1. Control parameters

Occupational Exposure Limit Values

<table>
<thead>
<tr>
<th>Substance:</th>
<th>Boron oxide / Diboron trioxide</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS No:</td>
<td>1303-86-2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Limit value - Eight hours</th>
<th>Limit value – Short term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ppm</td>
<td>mg/m3</td>
</tr>
<tr>
<td>Belgium</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Canada - Quebec</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>10 inhalable aerosol</td>
<td></td>
</tr>
<tr>
<td>USA-NIOSH</td>
<td>10 (1)</td>
<td></td>
</tr>
<tr>
<td>USA-OSHA</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

Source: IFA Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung

Remarks

(1) total dust

ACGIH/TLV

10 mg/m³

CAL OSHA/PEL

10 mg/m³

OSHA/PEL (total dust)

15 mg/m³

OSHA/PEL (respirable dust)

5 mg/m³

DNEL values

<table>
<thead>
<tr>
<th>Exposure pattern</th>
<th>Type/site of effect</th>
<th>Exposure route</th>
<th>DNEL value (for Boron)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNELs for workers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-term</td>
<td>Systemic</td>
<td>Inhalation</td>
<td>1.45 mg BA/m³</td>
</tr>
<tr>
<td>Long-term</td>
<td>Systemic</td>
<td>Dermal</td>
<td>4800 mg BA/day</td>
</tr>
<tr>
<td>DNELs for the general public</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute</td>
<td>Systemic</td>
<td>Oral</td>
<td>0.17 mg BA/kg bw/day</td>
</tr>
<tr>
<td>Long-term</td>
<td>Systemic</td>
<td>Dermal (external)</td>
<td>34.3 mg BA/kg bw/day</td>
</tr>
<tr>
<td>Long-term</td>
<td>Systemic</td>
<td>Dermal (systemic)</td>
<td>0.17 mg BA/kg bw/day</td>
</tr>
<tr>
<td>Long-term</td>
<td>Systemic</td>
<td>Inhalation</td>
<td>0.73 mg BA/m³</td>
</tr>
<tr>
<td>Long-term</td>
<td>Systemic</td>
<td>Oral</td>
<td>0.17 mg BA/kg bw/day</td>
</tr>
</tbody>
</table>

Source: Chemical Safety Report of Boron Oxide
PNEC values

PNEC\textsubscript{add, freshwater, marine water} = 1.35 mg B/L
PNEC\textsubscript{add aqua intermitt} = 9.1 mg B/L
PNEC\textsubscript{add freshwater sediment, marine water sediment} = 1.8 mg B/kg sediment dry weight
PNEC\textsubscript{add, STP} = 1.75 mg B/L
Source: Chemical Safety Report of Boron Oxide

8.2. Exposure controls

8.2.1. Appropriate engineering controls
No data available

8.2.2. Individual protection measures, such as personal protective equipment
Use local exhaust ventilation to keep airborne concentrations of boron oxide dust below permissible exposure levels.

- **Respiratory protection**
 Where airborne concentrations are expected to exceed exposure limits, respirators should be used.

- **Eyes and hands protection**
 Goggles and gloves are not required for normal industrial exposures, but may be warranted if environment is excessively dusty.

8.2.3. Environmental exposure controls
No special requirement.

SECTION 9. Physical and chemical properties

9.1. Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Crystalline white, solid.</td>
</tr>
<tr>
<td>Odour</td>
<td>odourless</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>N.A.</td>
</tr>
<tr>
<td>pH @ 20°C</td>
<td>4.4 (1.0% solution)</td>
</tr>
<tr>
<td>Melting point</td>
<td>450 ± 2°C</td>
</tr>
<tr>
<td>Initial boiling point and boiling range</td>
<td>1860°C</td>
</tr>
<tr>
<td>Flash point</td>
<td>Non flammable</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>N.A.</td>
</tr>
<tr>
<td>Flammability (solid, gas)</td>
<td>N.A.</td>
</tr>
<tr>
<td>Upper/lower flammability or explosive limits</td>
<td>N.A.</td>
</tr>
<tr>
<td>Vapour pressure</td>
<td>Negligible @ 20°C</td>
</tr>
<tr>
<td>Vapour density</td>
<td>N.A.</td>
</tr>
<tr>
<td>Relative density</td>
<td>2.04 @ 20°C</td>
</tr>
<tr>
<td>Solubility in water</td>
<td>2.7 % @ 20°C</td>
</tr>
<tr>
<td>Partition coefficient: n-octanol/water</td>
<td>Log P\textsubscript{ow} = -0.7570 at 25°C.</td>
</tr>
<tr>
<td>Auto-ignition temperature</td>
<td>N.A.</td>
</tr>
<tr>
<td>Decomposition temperature</td>
<td>N.A.</td>
</tr>
<tr>
<td>Viscosity</td>
<td>N.A.</td>
</tr>
<tr>
<td>Explosive properties</td>
<td>Non explosive</td>
</tr>
<tr>
<td>Oxidising properties</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

9.2. Other information

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular weight</td>
<td>69.6</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>2.04 @ 20°C</td>
</tr>
</tbody>
</table>
SECTION 10. Stability and reactivity

10.1. Reactivity
N.A.

10.2. Chemical stability
Boron oxide is a stable but hygroscopic product which absorbs moisture from the air. If moisture is present boron oxide may cause corrosion of base metals.

10.3. Possibility of hazardous reactions
Reaction with strong reducing agents such as metal hydrides or alkali metals will generate hydrogen gas which could create an explosive hazard. Reacts violently on contact with bromine pentafluorid. Slowly reacts with water to release heat (75.94 kJ/mol) and form boric acid.

10.4. Conditions to avoid
N.A.

10.5. Incompatible materials
Avoid contact with strong reducing agents such as metal hydrides or alkali metals; with bromine pentafluorid and with water

10.6. Hazardous decomposition products
N.A.

SECTION 11. Toxicological information

11.1. Information on toxicological effect

11.1.1. Substances
Acute toxicity\[2\]
Low acute oral toxicity; LD\(_{50}\) in rats is 1,970 to 2,100 mg/kg of body weight.

Skin corrosion / irritation
Low acute dermal toxicity; LD\(_{50}\) in rabbits is greater than 2,000 mg/kg of body weight. Boron oxide is poorly absorbed through intact skin. Non-irritant.

Serious eye damage/ irritation
Non-irritant.

Respiratory or skin sensitisation: N.A

Germ cell mutagenicity N.A.

Carcinogenicity N.A.

Reproductive toxicity
Animal feeding studies in rat, mouse and dog, at high doses, have demonstrated effects on fertility and testes\[2\]. Studies in rat, mouse and rabbit, at high doses, demonstrate developmental effects on the foetus including foetal weight loss and minor skeletal variations. The doses administered were many times in excess of those which humans would normally be exposed to \[3,4,5\]. Human epidemiological studies show no increase in pulmonary disease in occupational populations with chronic exposures to boric acid dust and sodium borate dust. A recent epidemiology study under the conditions of normal occupational exposure to borate dusts indicated no effect on fertility.

STOT-single exposure N.A

STOT-repeated exposure N.A.

Aspiration hazard No Data Available
GENERAL DIRECTORATE OF
ETI MADEN ISLETMELERİ

SECTION 12. Ecological information

Boron occurs naturally in sea water at an average concentration of 5 mg B/l and fresh water at 1 mg B/l or less. In dilute aqueous solutions the predominant boron species present is undissociated boric acid. To convert boron oxide into equivalent boron (B) content, multiply by 0.3105.

12.1. Toxicity

Phytotoxicity
Boron is an essential micronutrient for healthy growth of plants, however, it can be harmful to boron sensitive plants in higher quantities. Care should be taken to minimize the amount of borate product released to the environment.

Algal toxicity[6]

72-hr EC₅₀ –biomass = 40 mg B/L, or 229 mg boric acid/L.

Invertebrate toxicity[7]
Daphnia, Daphnids, *Daphnia magna* (Gersich, 1984a)

48-hr LC₅₀ = 133 mg B/L or 760 mg boric acid/L
or 619 mg disodium tetraborate, anhydrous/L

Fish toxicity[8]
Fish, Fathered minnow, *Pimephales promelas* (Soucek et al., 2010)

96-hr LC₅₀ = 79.7 mg B/L or 456 mg boric acid/L
or 370 mg disodium tetraborate, anhydrous

12.2. Persistence and degradability
Boron is naturally occurring and ubiquitous in the environment. Boron oxide decomposes in the environment to natural borate.

Boron oxide reacts with water to form boric acid. Heat of hydration to boric acid 75.94 kJ/mol

12.3. Bioaccumulative potential
Not significantly bioaccumulative.

12.4. Mobility in soil
The product is soluble in water and is leachable through normal soil.

12.5. Results of PBT and vPvB assessment
N.A.

12.6. Other adverse effects
No Data available

SECTION 13. Disposal considerations

13.1. Waste treatment methods
Small quantities of boron oxide can usually be disposed of at landfill sites. No special disposal treatment is required, but local authorities should be consulted about any specific local requirements. Tonnage quantities of product are not recommended to be sent to landfills. Such product should, if possible, be used for an appropriate application.
SECTION 14. Transport information

Boron oxide has no UN Number, and is not regulated under international rail, road, water or air transport regulations.

14.1. UN number N.A.
14.2. UN proper shipping name N.A.
14.3. Transport hazard class(es) N.A.
14.4. Packing group N.A.
14.5. Environmental hazards N.A.
14.6. Special precautions for user N.A.
14.7. Transport in bulk according to Annex II of MARPOL73/78 and the IBC Code N.A.

SECTION 15. Regulatory information

15.1. Safety, health and environmental regulations/legislations specific for the substance

It should be noted that borates are safe under conditions of normal handling and use, besides, they are essential nutrients to plants, and research shows that they play a beneficial role in human health. CLP classification has been solely based on animal tests where animals were exposed to high doses of boric acid over long periods of time. These doses were many times higher than humans are exposed to under conditions of normal handling and use. Consequently, a precautionary decision was taken by the European Commission. Although we will comply with the body of legislation triggered by that decision, we are in process of all possible legal actions.

Clean Air Act (Montreal Protocol)
Boron oxide was not manufactured with and does not contain any Class I or Class II ozone depleting substances.

Chemical inventory listing

- U.S. EPA TSCA Inventory 1303-86-2
- Canadian DSL 1303-86-2
- EINECS 215-125-8
- South Korea 1-63
- Japanese MITI (1)-69

Ensure all national/local regulations are observed.

EU Reach Regulation

Diboron trioxide is listed in the Candidate List of Substances of Very High Concern “SVHC” for eventual inclusion in Annex XIV to REACH Regulation 1907/2006 (“Authorisation List”). (15.06.2012-ED/87/2012).

Diboron trioxide is also listed in the Annex XVII of REACH Regulation 1907/2006 (EU No.109/2012) and its use in consumer products above specific concentration limits is restricted. Note that this restriction is only specific to consumer products and do not cover its industrial and/or professional applications. Diboron trioxide can be used in consumer products below specific concentration limits (which is $C \geq 3.1\%$ for Boron Oxide).

15.2. Chemical safety assessment

Chemical Safety Assessment of Boron Oxide (diboron trioxide) has been carried out under REACH Regulation of the EU.
SECTION 16. Other information

16.1. Mainly changes made to the previous version of this Material Safety Data Sheet (MSDS):

- Exposure scenario attached to present MSDS has induced a revision of this latter.
- This MSDS complies with ISO 11014; the requirements of REACH Title IV and was updated to be in compliance with Annex II of REACH duly amended by Commission Regulation (EU) No 453/2010 of 20 May 2010.
- The main addition is related the inclusion of Diboron trioxide as SVHC in the Candidate List and its inclusion in the Annex XVII list (Regulation EC No 109/2012 of 09.02.2012) that shall apply from 1st June 2012 (cf. section 15.1.).

16.2. List of abbreviation and acronyms used in this MSDS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSDS</td>
<td>Material Safety Data Sheet</td>
</tr>
<tr>
<td>Index N°</td>
<td>atomic number of the element most characteristic of the properties of the substance</td>
</tr>
<tr>
<td>CAS N°</td>
<td>Chemical Abstracts Service number</td>
</tr>
<tr>
<td>EC N°</td>
<td>EINECS Number: European Inventory of Existing Commercial Substances</td>
</tr>
<tr>
<td>DSD</td>
<td>Dangerous Substances Directive 67/548/EEC</td>
</tr>
<tr>
<td>Repr. Cat. 1B</td>
<td>substance presumed human reproductive toxicant</td>
</tr>
<tr>
<td>CLP</td>
<td>Classification Labelling Packaging Regulation: Regulation (EC) N°1272/2008</td>
</tr>
<tr>
<td>1st ATP</td>
<td>1st Adaptation to Technical and scientific Progress</td>
</tr>
<tr>
<td>LD₅₀</td>
<td>Median Lethal Dose</td>
</tr>
<tr>
<td>LC₅₀</td>
<td>Lethal Concentration, 50%</td>
</tr>
<tr>
<td>N.A.</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>DNEL</td>
<td>Derived No effect Level</td>
</tr>
<tr>
<td>PNEC</td>
<td>Predicted No Effect Concentration</td>
</tr>
<tr>
<td>CSR</td>
<td>Chemical Safety Report</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety & Health Administration</td>
</tr>
<tr>
<td>Cal OSHA</td>
<td>The State of California Division of Occupational Safety and Health (DOSH)</td>
</tr>
<tr>
<td>PEL</td>
<td>Permissible Exposure Limits</td>
</tr>
<tr>
<td>ACGIH</td>
<td>American Conference of Governmental Industrial Hygienists</td>
</tr>
<tr>
<td>TLV</td>
<td>Threshold Limit Value</td>
</tr>
<tr>
<td>Japanese MITI</td>
<td>Japanese Ministry of International Trade and Industry</td>
</tr>
<tr>
<td>EC₅₀</td>
<td>Half maximal effective concentration</td>
</tr>
<tr>
<td>PBT</td>
<td>Persistent, Bioaccumulative and Toxic substance</td>
</tr>
<tr>
<td>vPvB</td>
<td>Very Persistent and Very Bioaccumulative</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>U.S. EPA TSCA Inventory</td>
<td>Inventory of the chemical substances manufactured or processed in the United States according to Toxic Substances Control Act compiled and published under the authority of the Environmental Protection Agency</td>
</tr>
<tr>
<td>Canadian DSL</td>
<td>Canadian Domestic Substances List</td>
</tr>
</tbody>
</table>

16.3. List of relevant R phrases, hazard statements, safety phrases and/or precautionary statements used in this MSDS

<table>
<thead>
<tr>
<th>Risk Phrases</th>
<th>According to DSD Directive</th>
<th>According to CLP Regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>R60</td>
<td>May impair fertility</td>
<td>H360 FD: May damage fertility or the unborn child</td>
</tr>
<tr>
<td>R61</td>
<td>May cause harm to the unborn child</td>
<td></td>
</tr>
</tbody>
</table>

Page 11 of 12
16.4. References

16.5. Disclaimer of Liability

The information in this MSDS was obtained from sources which we believe are reliable. However, the information is provided without any warranty, express or implied, regarding its accuracy, reliability or completeness. The conditions or methods of handling, storage use or disposal of the product are beyond our control and may be beyond our knowledge. For this and other reasons, we do not assume responsibility and expressly disclaim liability for loss, damage or expense arising out of or in any way connected with the handling, storage, use or disposal of the product. It is the user’s responsibility to satisfy himself as to the suitableness and completeness of such information for his own particular use.

This MSDS was prepared and is to be used only for this product. If the product is used as a component in another product, this MSDS information may not be applicable.