BORIC ACID
HEALTH AND SAFETY DATA SHEET
SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier
Boric Acid

Index No : 005-007-00-2
CAS No : 10043-35-3
EC No : 233-139-2
REACH Registration number: 01-2119486683-25-0006

Trade names: Boric Acid

Chemical name/synonyms:
Orthoboric acid, boracic acid

1.2. Relevant identified uses of the substance and uses advised against

The product is used in industrial manufacturing, in particular in:
- Ceramics
- Cosmetics
- Detergent
- Borosilicate glass
- Textile fibreglass

1.3. Details of the supplier of the safety data sheet

Importer:
Name: ETIMINE SA
Address: 204, Zone Industrielle, Scheldeck 2, L-3225 Bettembourg, , LUXEMBOURG
Authorisation no: 00108143/6
Phone No: +352 52 02 02
Fax No: +352 52 02 03
e-mail: BoronMail@etimine.com

Manufacturer:
Name: GENERAL DIRECTORATE OF ETI MADEN ISLETMELEIRI
Phone No: +90 312 294 23 42
Fax No: +90 312 232 59 10

1.4. Emergency phone number:
+90 312 294 23 42 (Available office hours)
Fax number: +90 312 232 59 10 (Available office hours)

SECTION 2: Hazard Identification

2.1. Classification of the substance

Repr. Cat. 2; R60-R61
Concentrations limits: C ≥5.5%; R;R60-61
Risk Phrases: R60; R61
Safety Phrases: S45, S53
2.1.2. According to Regulation EC No1272/2008 (CLP):

Harmonised classification provided in the 1st ATP to CLP (Regulation EC n°790/2009)
Repr. Cat. 1B; H360FD
Specific concentrations limits: Repr. 1B; H360FD: C ≥5.5%
Precautionary Statement Prevention: P201; P202; P281
Precautionary Statement Response: P308 + P313
Precautionary Statement Storage: P405
Precautionary Statement Disposal: P501

2.1.3. Additional information
For Full text of R-S phrases as well as Hazard Class/Statements and Precautionary Statements see section 16.

2.2. Label elements

2.2.1. According to CLP

BORIC ACID
CAS No: 10043-35-3, EC No: 233-139-2
Hazard pictograms:

Signal word:
Danger

Hazard Statements:
H 360FD: May damage fertility or the unborn child.

Precautionary Statements:
P201: Obtain special instruction before use
P202: Do not handle until all safety precautions have been read and understood
P281: Use personal protective equipment as required.
P308+P313: IF exposed or concerned: Get medical advice/attention
P405: Store locked up.

2.2.2. According to REACH, Annex XVII
Restricted to professional users

2.3. Other hazards

Emergency overview
Boric acid is a white odourless, powdered substance that is not flammable, combustible, or explosive, and has low acute oral and dermal toxicity.

Potential health effects
Inhalation is the most significant route of exposure in occupational and other settings. Dermal exposure is not usually a concern because boric acid is poorly absorbed through intact skin.

Inhalation
Occasional mild irritation effects to nose and throat may occur from inhalation of boric acid dusts at levels higher than 10 mg/m³.
Eye contact
Boric acid is non-irritating to eyes in normal industrial use.

Skin contact
Boric acid does not cause irritation to intact skin.

Ingestion
Products containing Boric Acid are not intended for ingestion. Boric Acid has a low acute toxicity. Small amounts (e.g., a teaspoon) swallowed accidentally are not likely to cause effects; swallowing amounts larger than that may cause gastrointestinal symptoms.

Reproductive/developmental
Animal ingestion studies in several species, at high doses, indicate that borates cause reproductive and developmental effects. A human study of occupational exposure to borate dust showed no adverse effect on reproduction. A recent epidemiological study and a peer reviewing report of the past epidemiological studies conducted in China didn’t show any negative effect of boron on human fertility (10,11).

Potential ecological effects
Large amounts of Boric Acid can be harmful to plants and other species. Therefore, releases to the environment should be minimized.

Signs and symptoms of exposure
Symptoms of accidental over-exposure to Boric Acid have been associated with ingestion or absorption through large areas of damaged skin. These may include nausea, vomiting and diarrhoea, with delayed effects of skin redness and peeling.

Refer to section 11 for details on Toxicological data.

SECTION 3: Composition / Information on ingredients

3.1. Substances
The product contains greater than 99.9 percent (%) boric acid (H₃BO₃).

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>EC N° / CAS Number</th>
<th>Registration Number</th>
<th>Purity</th>
<th>Risk Phrases (DSD)</th>
<th>Hazard Statement (CLP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boric Acid</td>
<td>233-139-2</td>
<td>01-2119486683-25-0006</td>
<td>99.9 %</td>
<td>R60 ; R61</td>
<td>H 360FD</td>
</tr>
</tbody>
</table>

For other "Chemical inventory listing", please refer to section 15.

SECTION 4: First aid measures

4.1. Description of first aid measures

Skin contact
No treatment necessary because non-irritating.

Eye contact
No treatment necessary because non-irritant.

Inhalation
If symptoms such as nose or throat irritation are observed, remove person to fresh air.

Ingestion
If large amounts are swallowed (i.e. more than one teaspoon), give two glasses of water or milk to drink and seek medical attention.
Note to physicians
Observation only is required for adult ingestion of less than 6 grams of boric acid. For ingestion in excess of 6 grams, maintain adequate kidney function and force fluids. Gastric lavage is recommended for symptomatic patients only. Haemodialysis should be reserved for massive acute ingestion or patients with renal failure. Boron analyses of urine or blood are only useful for documenting exposure and should not be used to evaluate severity of poisoning or to guide treatment[1] (see section 11).

4.2. Most important symptoms and effects, both acute and delayed
N.A. (Not Applicable)

4.3. Indication of any immediate medical attention and special treatment needed.
N.A.

SECTION 5: Fire-fighting measures

5.1. Extinguishing media
Any fire extinguishing media may be used on nearby fires.

5.2. Special hazards arising from the substance
None. Because, boric acid is not flammable, combustible or explosive. The product is itself a flame retardant.

5.3. Advice for firefighters
N.A.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures.
Avoid dust formation. In case of exposure to prolonged or high level of airborne dust, wear a personal respirator in compliance with national legislation.

6.2. Environmental precautions
Boric acid is a water-soluble white powder that may, at high concentrations cause damage to trees or vegetation by root absorption (see section 12).

6.3. Methods and material for containment and cleaning up
Land spill
Vacuum, shovel or sweep up boric acid and place in containers for disposal in accordance with applicable local regulations. Avoid contamination of water bodies during clean up and disposal. No personal protective equipment is needed to clean up land spills.

Spillage into water
Where possible, remove any intact containers from the water. Advise local water authority that none of the affected water should be used for irrigation or for the abstraction of potable water until natural dilution returns the boron value to its normal environmental background level (see sections 12, 13 and 15).

6.4. Reference to other sections
See sections 8 and 13 for further information.

SECTION 7: Handling and Storage

7.1. Precautions for safe handling
To maintain package integrity and to minimise caking of the product, bags should be handled on a first-in first-out basis. Good housekeeping and dust prevention procedures should be followed to minimise dust generation and accumulation. Your supplier can advise you on safe handling, please contact the supplier.
7.2. Conditions for safe storage, including any incompatibilities
No special handling precautions are required, but dry, indoor storage is recommended. No specific requirements. Provide appropriate ventilation and store bags such as to prevent any accidental damage.

7.3. Specific end use(s)
The product should be kept away from strong reducing agents. Apply above handling advice when mixing with other substances. See exposure scenario in Annex to the MSDS.

SECTION 8: Exposure controls / Personal protection

8.1. Control parameters

Occupational Exposure Limit Values

<table>
<thead>
<tr>
<th>Substance:</th>
<th>Boric acid and sodium borate</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS No:</td>
<td>10043-35-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Limit value-Eight hours</th>
<th>Limit value – Short term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ppm</td>
<td>mg/m³</td>
</tr>
<tr>
<td>Belgium</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Germany (AGS)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Germany (DFG)</td>
<td>10 inhalable aerosol (1)</td>
<td>10 inhalable aerosol (1,2)</td>
</tr>
<tr>
<td>Switzerland</td>
<td>10 inhalable aerosol</td>
<td>10 inhalable aerosol</td>
</tr>
</tbody>
</table>

Source: IFA Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung

Remarks
- Germany (AGS) (1) 15 minutes average value
- Germany (DFG) (1) calculated as boron: 1.8 mg/m³
- (2) 15 minutes average value

Respect regulatory provisions for dust (total and respirable).
- ACGIH/TLV 10 mg/m³
- Cal OSHA/PEL 10 mg/m³
- OSHA/PEL (total dust) 15 mg/m³
- OSHA/PEL (respirable dust) 5 mg/m³

DNEL values

<table>
<thead>
<tr>
<th>Exposure pattern</th>
<th>Type/site of effect</th>
<th>Exposure route</th>
<th>DNEL value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNELs for workers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-term</td>
<td>Systemic</td>
<td>Inhalation</td>
<td>8.3 mg BA/m³</td>
</tr>
<tr>
<td>Long-term</td>
<td>Systemic</td>
<td>Dermal</td>
<td>3924800 mg BA/day</td>
</tr>
<tr>
<td>DNELs for the general public</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute</td>
<td>Systemic</td>
<td>Oral</td>
<td>0.98 mg BA/kg bw/day</td>
</tr>
<tr>
<td>Long-term</td>
<td>Systemic</td>
<td>Dermal (external)</td>
<td>196 mg BA/kg bw/day</td>
</tr>
<tr>
<td>Long-term</td>
<td>Systemic</td>
<td>Dermal (systemic)</td>
<td>0.98 mg BA/kg bw/day</td>
</tr>
<tr>
<td>Long-term</td>
<td>Systemic</td>
<td>Inhalation</td>
<td>4.15 mg BA/m³</td>
</tr>
<tr>
<td>Long-term</td>
<td>Systemic</td>
<td>Oral</td>
<td>0.98 mg BA/kg bw/day</td>
</tr>
</tbody>
</table>

Source: Chemical Safety Report of Boric Acid
PNEC values

\[
\text{PNEC}_{\text{add, freshwater, marine water}} = 1.35 \text{ mg B/L}
\]
\[
\text{PNEC}_{\text{add aqua intermittent}} = 9.1 \text{ mg B/L}
\]
\[
\text{PNEC}_{\text{add freshwater sediment, marine water sediment}} = 1.8 \text{ mg B/kg sediment dry weight}
\]
\[
\text{PNEC}_{\text{add, STP}} = 1.75 \text{ mg B/L}
\]
Source: Chemical Safety Report of Boric Acid

8.2. Exposure controls

8.2.1. Appropriate engineering controls

No data available

8.2.2. Individual protection measures, such as personal protective equipment

Use local exhaust ventilation to keep airborne concentrations of boric acid dust below permissible exposure levels. Wash hands before breaks and at the end of the workday. Remove and wash soiled clothing.

- Respiratory protection
 In case of prolonged exposure to dust wear a personal respirator in compliance with national legislation (make reference to the appropriate CEN standart)
 Where airborne concentrations are expected to exceed exposure limits, respirators should be used.

- Eyes and hands protection
 Goggles and gloves are not required for normal industrial exposures, but may be warranted if environment is excessively dusty.

8.2.3. Environmental exposure controls

No special requirement.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>crystalline white, solid</td>
</tr>
<tr>
<td>Odour</td>
<td>odourless</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>N.A.</td>
</tr>
<tr>
<td>pH @ 20°C</td>
<td>6.1 (0.1 % solution)</td>
</tr>
<tr>
<td></td>
<td>5.1 (1.0% solution)</td>
</tr>
<tr>
<td></td>
<td>3.7 (4.7 % solution)</td>
</tr>
<tr>
<td>Melting point</td>
<td>171°C (heated in closed space)</td>
</tr>
<tr>
<td>Initial boiling point and boiling range</td>
<td>1860°C</td>
</tr>
<tr>
<td>Flash point</td>
<td>Non flammable</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>N.A.</td>
</tr>
<tr>
<td>Flammability (solid, gas)</td>
<td>N.A.</td>
</tr>
<tr>
<td>Upper/lower flammability or explosive limits</td>
<td>N.A.</td>
</tr>
<tr>
<td>Vapour pressure</td>
<td>Negligible @ 20°C</td>
</tr>
<tr>
<td>Vapour density</td>
<td>N.A.</td>
</tr>
<tr>
<td>Relative density</td>
<td>1.51 @ 20°C</td>
</tr>
<tr>
<td>Solubility in water</td>
<td>4.7% @ 20°C; 27.5% @ 100°C</td>
</tr>
<tr>
<td>Partition coefficient: n-octanol/water</td>
<td>No Data Available</td>
</tr>
<tr>
<td>Auto-ignition temperature</td>
<td>N.A.</td>
</tr>
<tr>
<td>Decomposition temperature</td>
<td>169±1 to HBO₂ & -1 ½ H₂O at 300 °C</td>
</tr>
<tr>
<td>Viscosity</td>
<td>N.A.</td>
</tr>
<tr>
<td>Explosive properties</td>
<td>Non explosive</td>
</tr>
<tr>
<td>Oxidising properties</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

Page 7 of 12
9.2. Other information
Molecular weight 61.83
Specific gravity 1.51 @ 20°C

SECTION 10: Stability and reactivity

10.1. Reactivity
N.A.

10.2. Chemical stability
Boric acid is a stable product, but when heated it loses water, first forming metaboric acid (HBO$_2$), and on further heating it is converted into boric oxide (B$_2$O$_3$).

10.3. Possibility of hazardous reactions
Reaction with strong reducing agents such as metal hydrides or alkali metals will generate hydrogen gas which could create an explosive hazard.

10.4. Conditions to avoid
N.A.

10.5. Incompatible materials
Boric acid reacts as a weak acid which may cause corrosion of base metals. Avoid contact with strong reducing agents such as metal hydrides or alkali.

10.6. Hazardous decomposition products
N.A.

SECTION 11: Toxicological information

11.1. Information on toxicological effect

11.1.1. Substances

Acute toxicity
Low acute oral toxicity; LD$_{50}$ in rats is 3,500 to 4,100 mg/kg of body weight.

Skin corrosion / irritation
Low acute dermal toxicity; LD$_{50}$ in rabbits is greater than 2,000 mg/kg of body weight. Boric acid is poorly absorbed through intact skin. Non-irritant.

Serious eye damage/ irritation
Non-irritant.

Respiratory or skin sensitisation: N.A.

Germ cell mutagenicity N.A.

Carcinogenicity N.A.

Reproductive toxicity
Animal feeding studies in rat, mouse and dog, at high doses, have demonstrated effects on fertility and testes. Studies in rat, mouse and rabbit, at high doses, demonstrate developmental effects on the foetus including foetal weight loss and minor skeletal variations. The doses administered were many times in excess of those which humans would normally be exposed to. Human epidemiological studies show no increase in pulmonary disease in occupational populations with chronic exposures to boric acid dust and sodium borate dust. A recent epidemiology study under the conditions of normal occupational exposure to borate dusts indicated no effect on fertility.
STOT-single exposure N.A.
STOT-repeated exposure N.A.

Aspiration hazard
Low acute inhalation toxicity; LC$_{50}$ in rats is greater than 2.0 mg/l (or g/m3).

SECTION 12: Ecological information

Boron occurs naturally in sea water at an average concentration of 5 mg B/l and fresh water at 1 mg B/l or less. In dilute aqueous solutions the predominant boron species present is undissociated boric acid. To convert boric acid into equivalent boron (B) content, multiply by 0.1748. Not persistent, not bioaccumulative.

12.1. Toxicity
Phytotoxicity
Boron is an essential micronutrient for healthy growth of plants, however, it can be harmful to boron sensitive plants in higher quantities. Care should be taken to minimise the amount of borate product released to the environment.

Algal toxicity$^{[6]}$
Green algae, Pseudokirchneriella subcapitata (Hansveit and Oldersma, 2000)
72-hr EC$_{50}$ – biomass = 40 mg B/L, or 229 mg boric acid/L.

Invertebrate toxicity$^{[7]}$
Daphnia, Daphnids, Daphnia magna (Gersich, 1984a)
48-hr LC$_{50}$ = 133 mg B/L or 760 mg boric acid/L or 619 mg disodium tetraborate, anhydrous/L

Fish toxicity$^{[8]}$
Fish, Fathered minnow, Pimephales promelas (Soucek et al., 2010)
96-hr LC$_{50}$ = 79.7 mg B/L or 456 mg boric acid/L or 370 mg disodium tetraborate, anhydrous

12.2. Persistence and degradability
Boron is naturally occurring and ubiquitous in the environment. Boric acid decomposes in the environment to natural borate.

12.3. Bioaccumulative potential
Not significantly bioaccumulative.

12.4. Mobility in soil
The product is soluble in water and is leachable through normal soil.

12.5. Results of PBT and vPvB assessment N.A.

12.6. Other adverse effects No Data Available

SECTION 13: Disposal considerations

13.1. Waste treatment methods
Small quantities of boric acid can usually be disposed of at landfill sites. No special disposal treatment is required, but local authorities should be consulted about any specific local requirements. Tonnage quantities of product are not recommended to be sent to landfills. Such product should, if possible, be used for an appropriate application.
SECTION 14: Transport information

Boric acid has no UN Number, and is not regulated under international rail, road, water or air transport regulations.

14.1. UN number N.A.
14.2. UN proper shipping name N.A.
14.3. Transport hazard class(es) N.A.
14.4. Packing group N.A.
14.5. Environmental hazards N.A.
14.6. Special precautions for user N.A.
14.7. Transport in bulk according to Annex II of MARPOL73/78 and the IBC Code N.A.

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance

It should be noted that borates are safe under conditions of normal handling and use, besides, they are essential nutrients to plants, and research shows that they play a beneficial role in human health. CLP classification has been solely based on animal tests where animals were exposed to high doses of boric acid over long periods of time. These doses were many times higher than humans are exposed to under conditions of normal handling and use. Consequently, a precautionary decision was taken by the European Commission. Although we will comply with the body of legislation triggered by that decision, we are in process of all possible legal actions.

Clean Air Act (Montreal Protocol)
Boric acid was not manufactured with and does not contain any Class I or Class II ozone depleting substances.

Cosmetics
The EC Directive 76/768/EEC sets an upper limit of 5% Boric acid in talcs, 0.5% in oral hygiene products and 3% in other products. In addition, the talcs should not be used on children under 3 years of age.

Chemical inventory listing
- U.S. EPA TSCA Inventory 10043-35-3
- Canadian DSL 10043-35-3
- EINECS 233-139-2
- South Korea 1-439
- Japanese MITI (1)-63

Ensure all national/local regulations are observed.

EU Reach Regulation
Boric Acid is listed in the Candidate List of Substances of Very High Concern “SVHC” for eventual inclusion in Annex XIV to REACH Regulation 1907/2006 (“Authorisation List”). (18.06.2010-ED/30/2010).

Boric acid is listed in the Annex XVII of REACH Regulation 1907/2006 (EU No.109/2012) and its use in consumer products above specific concentration limits is restricted. Note that this restriction is only specific to consumer products and do not cover its industrial and/or professional applications. Boric acid can be used in consumer products below specific concentration limits (which is C ≥5.5% for Boric Acid).

15.2. Chemical safety assessment
Chemical Safety Assessment of Boric Acid has been carried out under REACH Regulation of the EU.
SECTION 16: Other information

16.1. Mainly changes made to the previous version of this Material Safety Data Sheet (MSDS):

- Exposure scenario attached to present MSDS has induced a revision of this latter.
- This MSDS complies with ISO 11014; the requirements of REACH Title IV and was updated to be in compliance with Annex II of REACH duly amended by Commission Regulation (EU) No 453/2010 of 20 May 2010.
- The main addition is related to the inclusion of Boric Acid in the Annex XVII list (Regulation EC No 109/2012 of 09.02.2012) that shall apply from 1st June 2012 (cf. section 15.1.).

16.2. List of abbreviation and acronyms used in this MSDS

MSDS:	Material Safety Data Sheet
Index N°:	atomic number of the element most characteristic of the properties of the substance
CAS N°:	Chemical Abstracts Service number
EC N°:	EINECS Number: European Inventory of Existing Commercial Substances
DSD:	Dangerous Substances Directive 67/548/EEC
Repr. Cat. 1B:	substance presumed human reproductive toxicant
CLP:	Classification Labelling Packaging Regulation: Regulation (EC) No 1272/2008
1st ATP:	1st Adaptation to Technical and scientific Progress
LD₅₀:	Median Lethal Dose
LC₅₀:	Lethal Concentration, 50%
N.A.	Not Applicable
DNEL:	Derived No effect Level
PNEC:	Predicted No Effect Concentration
CSR:	Chemical Safety Report
OSHA:	Occupational Safety & Health Administration
Cal OSHA:	The State of California Division of Occupational Safety and Health (DOSH)
PEL:	Permissible Exposure Limits
ACGIH:	American Conference of Governmental Industrial Hygienists
TLV:	Threshold Limit Value
Japanese MITI:	Japanese Ministry of International Trade and Industry
EC₅₀:	Half maximal effective concentration
PBT:	Persistent, Bioaccumulative and Toxic substance
vPvB:	Very Persistent and Very Bioaccumulative
UN:	United Nations
U.S. EPA TSCA Inventory:	Inventory of the chemical substances manufactured or processed in the United States according to Toxic Substances Control Act compiled and published under the authority of the Environmental Protection Agency
Canadian DSL:	Canadian Domestic Substances List

16.3. List of relevant R phrases, hazard statements, safety phrases and/or precautionary statements used in this MSDS

<table>
<thead>
<tr>
<th>According to DSD Directive</th>
<th>According to CLP Regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Phrases</td>
<td>Hazard Statement</td>
</tr>
<tr>
<td>R60 : May impair fertility</td>
<td>H360 FD: May damage fertility or the unborn child</td>
</tr>
<tr>
<td>R61 : May cause harm to the unborn child</td>
<td></td>
</tr>
</tbody>
</table>

Page 11 of 12
Safety Phrases

S45: In case of accident or if you fell unwell, contact a doctor or poisons information centre immediately (show the label where possible).

S53: Avoid exposure—obtain special instructions before use.

Precautionary Statements

Prevention

- **P201:** Obtain special instructions before use.
- **P202:** Do not handle until all safety precautions have been read and understood.
- **P281:** Use personal protective equipment as required.

Response

- **P308 + P313:** If exposed or concerned: get medical advice/attention.

Storage

- **P405:** Store locked up.

Disposal:

- **P501:** Dispose of contents/container to in accordance with local regulations.

16.4. References

16.5. Disclaimer of Liability

The information in this MSDS was obtained from sources which we believe are reliable. However, the information is provided without any warranty, express or implied, regarding its accuracy, reliability or completeness. The conditions or methods of handling, storage use or disposal of the product are beyond our control and may be beyond our knowledge. For this and other reasons, we do not assume responsibility and expressly disclaim liability for loss, damage or expense arising out of or in any way connected with the handling, storage, use or disposal of the product. It is the user’s responsibility to satisfy himself as to the suitableness and completeness of such information for his own particular use.

This MSDS was prepared and is to be used only for this product. If the product is used as a component in another product, this MSDS information may not be applicable.